跳到主要内容

2 篇博文 含有标签「Reviewbot」

查看所有标签

Reviewbot 开源 | 为什么我们要打造自己的代码审查服务?

· 阅读需 10 分钟
CarlJi
Coder|Blogger|Engineer|Mentor

Reviewbot 是七牛云开源的一个项目,旨在提供一个自托管的代码审查服务, 方便做 code review/静态检查, 以及自定义工程规范的落地。


静态检查不是个新鲜事。

我记得早在几年前,我们就调研并使用过 sonarqube 做静态检查,但当时并没有大范围的推广。主要原因在于,一是发现的问题多数是风格问题,较少能发现缺陷; 二是 sonarqube 社区版的 worker 数有限制,满足不了我们大规模代码扫描的需求。当然,也是因为前一个问题,感觉付费并不是很划算。

而由于七牛主要使用 golang 语言,所以在静态检查方面,我们基本使用 go vet/fmt/lint 等,再就是后来的 golangci-lint,好像也够用了。

但随着代码仓库的增多,以及对工程规范的不断强化,我们越来越发现当前的落地方式,已经开始无法满足我们的需求。

Linter 工具的引入与更新问题

以 golangci-lint 为例,其是 go 语言 linters 聚合器,内置了 100+ linters,使用也很简单, golangci-lint run 一条命令即可。但你知道吗?如果没有特殊配置,你这条命令其实仅仅执行其中的 6 个 linter,绝大部分 linters 都没有执行!

另外,工具本身需要更新,且很多时候我们也会自己定制 linter 工具,这种时候该怎么做呢?如果仅有少量仓库,可能还好,但如果仓库很多,那维护成本就上去了。

还有就是新业务,新仓库,如何保证相关的检查能够及时配置,相关的规范能够正确落地?

靠自觉一定是不行的。

Linter 问题的发现与修复情况

如何确保发现的问题能够被及时修复?如何让问题能更及时、更容易的被修复?

埋藏在大量 raw log 中的问题,一定是不容易被发现的,查找起来很麻烦,体验很差。

历史代码仓库的存量问题,谁来改?改动就需要时间,但实际上很多业务研发可能并没有动力来跟进。同样,变动总是有风险的,有些 lint 问题修复起来也并不简单,如果因修复 lint 问题而引入风险,那就得不偿失了。

如果想了解当前组织内 lint 问题的分布及修复情况,又该怎么办呢?

如何解决,方向在哪里?

不可否认,linter 问题也是问题,如果每行代码都能进行充分的 lint 检查,那一定比不检查要强。

另一方面,组织内制定好的工程规范,落地在日常的开发流程中,那一定是希望被遵守的,这类就是强需。

所以这个事情值得做,但做的方式是值得思考的,尤其是当我们有更高追求时。

参考 CodeCov 的服务方式,以及 golangci-lint reviewdog 等工具的设计理念,我们认为:

  • 如果能对于新增仓库、历史仓库,不需要专人配置 job,就能自动生效,那一定是优雅的
  • 如果能只针对 PR/MR 中的变动做分析和反馈,类似我们做 Code Review 那样,那对于提 PR 的同学来讲一定是优雅的,可接受的,随手修复的可能性极大
    • 而进一步,针对 PR/MR 中涉及的文件中的历史代码进行反馈,在合理推动下,支持夹带修改,持续改进的可能性也会大大增强
  • Lint 工具多种多样,或者我们自己开发出新工具时,能够较为轻松的让所有仓库都自动生效,那也一定是非常赞的,不然就可能陷入工具越多负担越重的风险

基于上面的思考,我认为我们需要的是: 一个中心化的 Code Review/静态检查服务,它能自动接受整个组织内 PR/MR 事件,然后执行各种预定义的检查,并给与精确到变动文 �� 级的有效反馈。它要能作为代码门禁,持续的保障入库代码质量。

Reviewbot 就是这样一个项目。

Reviewbot 在设计和实现上有哪些特点?

面向改进的反馈方式

这将是 Reviewbot 反馈问题的核心方式,它会尽可能充分利用各 Git 平台的自身能力,精确到变动的代码行,提供最佳的反馈体验。

  • Github Check Run (Annotations) github-check-run
  • Github Pull Request Review (Comments) github-pr-review-comments

支持多种 Runner

Reviewbot 是自托管的服务,推荐大家在企业内自行部署,这样对私有代码更友好。

Reviewbot 自身更像个管理服务,不限制部署方式。而对于任务的执行,它支持多种 Runner,以满足不同的需求。比如:

  • 不同的仓库和 linter 工具,可能需要不同的基础环境,这时候你就可以将相关的环境做成 docker 镜像,直接通过 docker 来执行
  • 而当任务较多时,为了执行效率,也可以选择通过 kubernetes 集群来执行任务。

使用也很简单,在配置文件中的目标仓库指定即可。类似:

dockerAsRunner:
image: "aslan-spock-register.qiniu.io/reviewbot/base:go1.22.3-gocilint.1.59.1"
kubernetesAsRunner:
image: "aslan-spock-register.qiniu.io/reviewbot/base:go1.23.2-gocilint.1.61.0"
namespace: "reviewbot"

零配置+定制化

本质上,Reviewbot 也是个 webhook 服务,所以我们只需要在 git provider 平台配置好 Reviewbot 的回调地址即可(github 也可以是 Github App)。

绝大部分的 linter 的默认最佳执行姿势都已经固定到代码中,如无特殊,不需要额外配置就能对所有仓库生效。

而如果仓库需要特殊对待,那就可以通过配置来调整。

类似:

org/repo:
linters:
golangci-lint:
enable: true
dockerAsRunner:
image: "aslan-spock-register.qiniu.io/reviewbot/base:go1.22.3-gocilint.1.59.1"
command:
- "/bin/sh"
- "-c"
- "--"
args:
- |
source env.sh
export GO111MODULE=auto
go mod tidy
golangci-lint run --timeout=10m0s --allow-parallel-runners=true --print-issued-lines=false --out-format=line-number >> $ARTIFACT/lint.log 2>&1

可观察

Reviewbot 是在对工程规范强管理的背景下产生的,那作为工程规范的推动方,我们自然有需求想了解组织内当前规范的执行情况。比如, 都有哪些问题被检出?哪些仓库的问题最多?哪些仓库需要特殊配置?

目前 Reviewbot 支持通过企业微信来接收通知,比如:

  • 检出有效问题

found-valid-issue

  • 遇到错误

found-unexpected-issue

当然,未来可能也会支持更多方式。

其他更多的功能和姿势,请参考仓库: https://github.com/qiniu/reviewbot

Reviewbot 的未来规划

作为开源项目,Reviewbot 还需要解决很多可用性和易用性问题,以提升用户体验,比如最典型的,接入更多的 git provider(gitlab/gitee 等),支持 CLI 模式运行。

但我个人认为,作为 code review 服务,提供更多的检测能力,才是重中之重。因为这不光是行业需求,也是我们自身需要。

所以后面我们除了会引入七牛内部推荐的规范,也会调研和探索更多的行业工具,同时会考虑引入 AI,探索 AI 在 code review 中的应用等等。

Anyway,Reviewbot 还很年轻,我们在持续的改进中,非常欢迎大家试用并提出宝贵意见。当然,更欢迎大家一起参与到项目建设中来。

为了方便沟通,我建了 微信 和 QQ 群,欢迎大家扫码加入,一起交流。

reviewbot-wechat-group reviewbot-qq-group

感谢大家。

Reviewbot - Boost Your Code Quality with Self-Hosted Automated Analysis and Review

· 阅读需 3 分钟
CarlJi
Coder|Blogger|Engineer|Mentor

Looking to build a self-hosted code review service? Try Reviewbot, now open-sourced!

When do you need a self-hosted code review service?

You might need one when:

  • You have many repos but still want tight control over code quality
  • Your repos are private, and commercial services seem overkill
  • You want to continuously improve the process and rules, with full customization

Benefits of a self-hosted code review service

While many linter tools and engineering practices exist, they're often underutilized:

  • Powerful tools like golangci-lint (with 100+ integrated linters) are often used with default settings, ignoring most features
  • Linter outputs get buried in logs, making issue-finding a chore
  • Configuring CLI-based linters for multiple repos is tedious, especially for ongoing improvements
  • Monitoring code quality across repos can be daunting

A self-hosted service can automate all this. As a DevOps or QA team member, you can easily centralize control, monitoring, and customization of code quality across all repos.

Enter Reviewbot - your solution for self-hosted code review.

What can Reviewbot do?

Reviewbot helps you quickly set up a self-hosted code analysis and review service, supporting multiple languages and coding standards. It's perfect for organizations with numerous private repos.

Issues are reported during Pull Requests as Review Comments or Github Annotations, pinpointing exact code lines.

  • Github Check Run (Annotations)

    Github Check Run Github Check Run Annotations

  • Github Pull Request Review Comments

    Github Pull Request Review Comments

This approach saves PR authors from sifting through lengthy logs, streamlining problem-solving.

Reviewbot's Design Philosophy

Focused on:

  • Security - Self-hosting for data control
  • Improvement-Oriented - Issues reported as Review Comments or Github Annotations for easy fixes
  • Flexibility - Multi-language support with easy tool integration
  • Observability - Alert notifications for timely issue awareness
  • Configurable - Customizable linter commands, parameters, and environments

Built with Golang, Reviewbot boasts simple logic and clear code for easy maintenance.

Main Flow

Reviewbot primarily operates as a GitHub Webhook/App service, accepting GitHub Events, executing various checks, and providing precise feedback on the corresponding code if issues are detected.

Github Event -> Reviewbot -> Execute Linter -> Provide Feedback

And you can easily Add a New Linter or do Customization.

Monitoring Detection Results

Reviewbot supports notification of detection results through WeWork (企业微信) alerts.

found valid issue

If unexpected output is encountered, notifications will also be sent, like this:

found unexpected issue

More

Check out Reviewbot. Feel free to have a try.

Btw, this article is also published on medium website.

Stay tuned for more updates!